Main Article Content
Abstract
This work presents three automated pre-trained models to predict the difficulty of extracting the mandibular third molar using a dataset of 2414 panoramic radiography images based on pre-processed (shifted and rotated) from left and right mandibular third molar instances. Methods: we employed four distinct architectural models, namely VGG-16, VGG-19, MobileNetV2, and ResNet50 to identify the difficulty of removing a mandibular third molar. We categorized the dataset into four categories of complexity to help in categorization (Normal, Easy, Medium, and difficult). Results: VGG-16, VGG-19, MobileNetV2 and ResNet50 had prediction accuracies of 81 %, 82 %, 79% and 44 %, respectively. Conclusions: the proposed deep learning model using VGG-19 could be a good tool to predict the difficulty of extracting a mandibular third molar using a panoramic radiographic image.
Keywords
Article Details
Copyright (c) 2024 Journal of Contemporary Dental Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
- Kaplan A, Haenlein M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz 2019;62:15-25.
- Jaskari J, Sahlsten J, Järnstedt J, Mehtonen H, Karhu K, Sundqvist O, et al. Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes. Sci Rep 2020;10:5842.
- Akadiri O, Obiechina A. Assessment of difficulty in third molar surgery--a systematic review. J Oral Maxillofac Surg 2009;67:771-4.
- Koerner K. The removal of impacted third molars. Principles and procedures. Dent Clin North Am 1994;38:255-78.
- Diniz-Freitas M, Lago-Méndez L, Gude-Sampedro F, Somoza- Martin JM, Gándara-Rey JM, García-García A. Pederson scale fails to predict how difficult it will be to extract lower third molars. Br J Oral Maxillofac Surg 2007;45:23-6.
- Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2015;13:8-17.
- Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2007;2:59-77.
- Meulstee J, Liebregts J, Xi T, Vos F, de Koning M, Bergé S, et al. A new 3D approach to evaluate facial profile changes following BSSO. J Craniomaxillofac Surg2015;43:1994-9.
- Steinbacher DM. Three-dimensional analysis and surgical planning in craniomaxillofacial surgery. J Oral Maxillofac Surg 2015;73:S40-56.
- Steinhuber T, Brunold S, Gärtner C, Offermanns V, Ulmer H, Ploder O. Is virtual surgical planning in orthognathic surgery faster than conventional planning? A time and workflow analysis of an office-based workflow for single- and double-jaw surgery. J Oral Maxillofac Surg 2018;76:397-407.
- Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2018;2:35.
- Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform 2017;18:851-69.
- Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35:1285-98.
- Kruger E, Thomson WM, Konthasinghe P. Third molar outcomes from age 18 to 26: Findings from a population-based New Zealand longitudinal study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;92:150-5.
- Alfadil L, Almajed E. Prevalence of impacted third molars and the reason for extraction in Saudi Arabia. Saudi Dent J 2020;32:262-8.
- Yilmaz S, Adisen MZ, Misirlioglu M, Yorubulut S. Assessment of third molar impaction pattern and associated clinical symptoms in a central anatolian turkish population. Med Princ Pract 2016;25:169-75.
- Jaroń A, Trybek G. The pattern of mandibular third molar impaction and assessment of surgery difficulty: A retrospective study of radiographs in East baltic population. Int J Environ Res Public Health 2021;18:6016.
- Tan K, Oakley JP. Enhancement of Color Images in Poor Visibility Conditions. In: Proceedings 2000 International Conference on Image Processing. Vol. 2. IEEE; 2000.
- Chen SD, Ramli AR. Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Consum Electron 2003;49:1310-9.
- Ding W, Zhao Y, Zhang R. An adaptive multi-threshold segmentation algorithm for complex images under unstable imaging environment. Int J Comput Appl Technol 2019;61:265-72.
- Shao D, Xu C, Xiang Y, Gui P, Zhu X, Zhang C, et al. Ultrasound image segmentation with multilevel threshold based on differential search algorithm. IET Image Process 2019;13:998-1005.
- Sun S, Song H, He D, Long Y. An adaptive segmentation method combining MSRCR and mean shift algorithm with K-means correction of green apples in natural environment. Inf Process Agric 2019;6:200-15.
- He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA; 2016.
- Sifre L. Rigid Motion Scattering for Image Classification. Ph.D thesis; 2014.
- Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv [Preprint arXiv:1502.03167]. 2015.
- Jin J, Dundar A, Culurciello E. Flattened convolutional neural networks for feedforward acceleration. arXiv [Preprint arXiv:1412.5474]. 2014.
- Wang M, Liu B, Foroosh H. Factorized convolutional neural networks. arXiv [Preprint arXiv:1608.04337]. 2016.
- Chollet F. Xception: Deep learning with depthwise separable convolutions. arXiv [Preprint arXiv:1610.02357v2]. 2016.
- Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 1MB model size. arXiv [Preprint arXiv:1602.07360]. 2016.
- Sindhwani V, Sainath T, Kumar S. Structured transforms for small-footprint deep learning. In Advances in Neural Information Processing Systems. United States: MIT Press; 2015. p. 3088-96.
- Koppe G, Meyer-Lindenberg A, Durstewitz D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology 2021;46:176-90.
- Socher R, Perelygin A, Wu J, Chuang J, Manning CD, Ng AY, Potts C. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Washington, DC: Association for Computational Linguistics; 2013.
- Goller C, Kuchler A. Learning Task-dependent Distributed Representations by Backpropagation through Structure. In: Proceedings of International Conference on Neural Networks (ICNN’96). Vol. 1. IEEE; 1996.
- Socher R, Lin CCY, Ng AY, Manning CD. Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on Machine Learning, (ICML); 2011.
- Jiang Y, Kim H, Asnani H, Kannan S, Oh S, Viswanath P. Learn codes: Inventing low-latency codes via recurrent neural networks. IEEE J Sel Areas Inf Theory 2020;1:207-16.
- Zhou DX. Theory of deep convolutional neural networks: Downsampling. Neural Netw 2020;124:319-27.
- Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional neural networks. Pattern Recogn 2018;77:354-77.
- Fang W, Love PE, Luo H, Ding L. Computer vision for behaviour-based safety in construction: A review and future directions. Adv Eng Inform 2020;43:100980.
- Palaz D, Magimai-Doss M, Collobert R. End-to-end acoustic modeling using convolutional neural networks for hmm-based automatic speech recognition. Speech Commun 2019;108:15-32.
- Li HC, Deng ZY, Chiang HH. Lightweight and resource-constrained learning network for face recognition with performance optimization. Sensors (Basel) 2020;20:6114.
- Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 1962;160:106-54.
References
Kaplan A, Haenlein M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz 2019;62:15-25.
Jaskari J, Sahlsten J, Järnstedt J, Mehtonen H, Karhu K, Sundqvist O, et al. Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes. Sci Rep 2020;10:5842.
Akadiri O, Obiechina A. Assessment of difficulty in third molar surgery--a systematic review. J Oral Maxillofac Surg 2009;67:771-4.
Koerner K. The removal of impacted third molars. Principles and procedures. Dent Clin North Am 1994;38:255-78.
Diniz-Freitas M, Lago-Méndez L, Gude-Sampedro F, Somoza- Martin JM, Gándara-Rey JM, García-García A. Pederson scale fails to predict how difficult it will be to extract lower third molars. Br J Oral Maxillofac Surg 2007;45:23-6.
Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2015;13:8-17.
Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2007;2:59-77.
Meulstee J, Liebregts J, Xi T, Vos F, de Koning M, Bergé S, et al. A new 3D approach to evaluate facial profile changes following BSSO. J Craniomaxillofac Surg2015;43:1994-9.
Steinbacher DM. Three-dimensional analysis and surgical planning in craniomaxillofacial surgery. J Oral Maxillofac Surg 2015;73:S40-56.
Steinhuber T, Brunold S, Gärtner C, Offermanns V, Ulmer H, Ploder O. Is virtual surgical planning in orthognathic surgery faster than conventional planning? A time and workflow analysis of an office-based workflow for single- and double-jaw surgery. J Oral Maxillofac Surg 2018;76:397-407.
Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2018;2:35.
Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform 2017;18:851-69.
Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35:1285-98.
Kruger E, Thomson WM, Konthasinghe P. Third molar outcomes from age 18 to 26: Findings from a population-based New Zealand longitudinal study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;92:150-5.
Alfadil L, Almajed E. Prevalence of impacted third molars and the reason for extraction in Saudi Arabia. Saudi Dent J 2020;32:262-8.
Yilmaz S, Adisen MZ, Misirlioglu M, Yorubulut S. Assessment of third molar impaction pattern and associated clinical symptoms in a central anatolian turkish population. Med Princ Pract 2016;25:169-75.
Jaroń A, Trybek G. The pattern of mandibular third molar impaction and assessment of surgery difficulty: A retrospective study of radiographs in East baltic population. Int J Environ Res Public Health 2021;18:6016.
Tan K, Oakley JP. Enhancement of Color Images in Poor Visibility Conditions. In: Proceedings 2000 International Conference on Image Processing. Vol. 2. IEEE; 2000.
Chen SD, Ramli AR. Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Consum Electron 2003;49:1310-9.
Ding W, Zhao Y, Zhang R. An adaptive multi-threshold segmentation algorithm for complex images under unstable imaging environment. Int J Comput Appl Technol 2019;61:265-72.
Shao D, Xu C, Xiang Y, Gui P, Zhu X, Zhang C, et al. Ultrasound image segmentation with multilevel threshold based on differential search algorithm. IET Image Process 2019;13:998-1005.
Sun S, Song H, He D, Long Y. An adaptive segmentation method combining MSRCR and mean shift algorithm with K-means correction of green apples in natural environment. Inf Process Agric 2019;6:200-15.
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA; 2016.
Sifre L. Rigid Motion Scattering for Image Classification. Ph.D thesis; 2014.
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv [Preprint arXiv:1502.03167]. 2015.
Jin J, Dundar A, Culurciello E. Flattened convolutional neural networks for feedforward acceleration. arXiv [Preprint arXiv:1412.5474]. 2014.
Wang M, Liu B, Foroosh H. Factorized convolutional neural networks. arXiv [Preprint arXiv:1608.04337]. 2016.
Chollet F. Xception: Deep learning with depthwise separable convolutions. arXiv [Preprint arXiv:1610.02357v2]. 2016.
Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 1MB model size. arXiv [Preprint arXiv:1602.07360]. 2016.
Sindhwani V, Sainath T, Kumar S. Structured transforms for small-footprint deep learning. In Advances in Neural Information Processing Systems. United States: MIT Press; 2015. p. 3088-96.
Koppe G, Meyer-Lindenberg A, Durstewitz D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology 2021;46:176-90.
Socher R, Perelygin A, Wu J, Chuang J, Manning CD, Ng AY, Potts C. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Washington, DC: Association for Computational Linguistics; 2013.
Goller C, Kuchler A. Learning Task-dependent Distributed Representations by Backpropagation through Structure. In: Proceedings of International Conference on Neural Networks (ICNN’96). Vol. 1. IEEE; 1996.
Socher R, Lin CCY, Ng AY, Manning CD. Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on Machine Learning, (ICML); 2011.
Jiang Y, Kim H, Asnani H, Kannan S, Oh S, Viswanath P. Learn codes: Inventing low-latency codes via recurrent neural networks. IEEE J Sel Areas Inf Theory 2020;1:207-16.
Zhou DX. Theory of deep convolutional neural networks: Downsampling. Neural Netw 2020;124:319-27.
Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional neural networks. Pattern Recogn 2018;77:354-77.
Fang W, Love PE, Luo H, Ding L. Computer vision for behaviour-based safety in construction: A review and future directions. Adv Eng Inform 2020;43:100980.
Palaz D, Magimai-Doss M, Collobert R. End-to-end acoustic modeling using convolutional neural networks for hmm-based automatic speech recognition. Speech Commun 2019;108:15-32.
Li HC, Deng ZY, Chiang HH. Lightweight and resource-constrained learning network for face recognition with performance optimization. Sensors (Basel) 2020;20:6114.
Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 1962;160:106-54.