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Introduction

Artificial intelligence is defined as a system’s ability 
to accurately understand external input, learn from 
it, and apply what it has learned to achieve specific 
objectives and tasks through flexible adaptation.[1] 
The digital revolution in dentistry has significantly 
transformed the discipline by largely automating the 
traditional dental process. Digital advancements have 
smoothed and accelerated daily practice, as well as 
providing great ease of use in several sectors, resulting 
in significant time and cost savings. It has shown 
tremendous development in dentistry through the use 
of deep learning (DL) models by detecting patterns in 
huge amounts of data and acquiring important data to 
gain additional knowledge and solve dental problems, 

such as the detection of carious lesions, periodontal 
lesions, mandibular canals, and cysts. They are also 
used to classify the skeleton and determine the difficulty 
of removing the third molar.[2]

One of the most common procedures in oral surgery 
is the removal of the third molar. Several studies have 
evaluated the difficulties of this surgical technique, 
with most of them attempting to identify the primary 
risk factors.[3] The Pedersen Scale classifies third molars 
using the Pell and Gregory classification (position of 
the third molar in relation to the occlusal plane and 
mandibular ramus) as well as tooth angulation.[4] On 
the other hand, the modified parent scale assesses 
the procedure’s difficulty using surgical technique 
parameters.[5] Even though these classifications are 
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routinely used to estimate the difficulty of third molar 
extraction, they both disregard some key pre-operative 
and intraoperative variables. The sensitivity of the 
Pedersen scale is compromised because it is based only 
on radiological data.

Accurately predicting a disease outcome is one of the 
most interesting and difficult jobs for clinicians.[6] 
Despite the widespread use of machine learning in 
medical research, attempts to employ it in disease 
diagnosis and prognosis are still relatively new, with 
the majority involving detection and classification.[7] 
Hence, medical imaging and computer-assisted surgical 
planning are important components of the pre-operative 
workup[8,9] because experimenting with different 
operating procedures in a virtual environment can 
reduce operation time and cost[10] while also promoting 
more consistent and optimized outcomes.

DL is also widely employed in biomedical imaging. 
Most DL methods rely on many data samples for 
training due to the need to optimize an immense 
number of weighting factors in convolutional neural 
networks (CNNs). The CNNs are designed to learn 
patterns from large datasets, without the need for a 
supervisor to label the data. The term “deep” refers to 
the number of (hidden) network layers to progressively 
extract information and features from the input data. 
The layers are interconnected via nodes or neurons. 
Each hidden layer uses the output of the previous 
layer as its input, thereby increasing the complexity 
and detail of what it is learning from layer to layer[11] 
Unfortunately, data collection in medical informatics 
is seen as a time-consuming and costly procedure. In 
the clinical setting, obtaining many training datasets 
is difficult, resulting in the overfitting of the model 
due to the constraints of small datasets.[12] As a result, 
a modified deep CNN has been studied to overcome 
the problem of limited datasets, which is based on 
transfer learning of unsupervised pre-training from a 
large number of datasets.[13]

Many patients have their mandibular third molars 
removed for a variety of reasons.[14,15] As a result, 
mandibular third molar extraction is a common 
procedure in oral and maxillofacial surgery. Symptoms 
appear 30–68% of the time following extraction of the 
third molar, depending on the impaction type of the 
third molar.[16] Third molars in the mandible grow 
in a variety of locations and directions, resulting 
in a variety of impaction patterns.[17] As a result, it 
is critical to evaluate the pattern of the impacted 

mandibular third molar before extraction to apply 
the proper surgical approach based on the impaction 
pattern.

Wisdom teeth are of great importance, but sometimes 
they have great damage, and in this case, the best 
solution is to remove them. Hence, in this study, we 
developed CNN to determine how difficult to remove 
a mandibular third molar. We used various transfer 
learning from the sample dataset on our panoramic 
radiology dataset with different classes (difficult, easy, 
medium, and normal), tested the system by comparing 
accuracy for different models such as VGG-16, VGG-19, 
MobilnetV2, and ResNet50.

Materials and Methods

Data preparation

Image data augmentation is a technique for artificially 
increasing the size of a training dataset by modifying 
photographs in the dataset. More data can help DL 
neural network models become more skilled, and 
augmentation approaches can help fit models generalize 
what they have learned to new images by creating 
modifications of the images. The Image Data Generator 
class in the Keras DL neural network toolkit allows you 
to fit models with image data, as shown in Figure 1.

Histogram equalization techniques for image 
enhancement show the images how the pixels in 
the image are distributed in terms of intensity. The 
histogram of photos that are too light or too dark.[18]

Histogram Equalization is widely used and developed, 
with multi-histogram Equalization being utilized to 
improve image contrast and brightness. The average 
image intensity of an image output produced by a 
dynamic equalization histogram is equal to the average 
image intensity of the input image. The histogram 
Equalization approach can be used not just in pictures 
but also in videos, resulting in a brilliant image output.[19] 
Improved image quality is a technique for achieving 
specific image conditions, as shown in Figure 2.

One of the most significant processes in grayscale 
picture data analysis is the segmentation algorithm. 
The threshold segmentation technique, among 
numerous grayscale picture segmentation algorithms, 
has the advantages of simplicity and efficiency of 
implementation and is thus commonly used.[20]
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The OTSU algorithm searches for thresholds by 
exhausting all solutions in the gray space, so as the 
number of thresholds grows, the search dimension to 
be performed grows as well, increasing the complexity. 
Many unnecessary calculations are performed, the 
time grows exponentially, and the search efficiency 
decreases.[21] Furthermore, images acquired through 
various channels are subject to a variety of random 
disturbances and conditions, resulting in a large amount 
of noise in the acquired original images, causing the 
features of things in the acquired original images to 
change dramatically, and if such images are analyzed 
directly, the understanding of the images will be greatly 
skewed.[22] As a result, optimizing the OTSU algorithm 
to increase computing efficiency and efficacy has 
become a challenging and contentious subject. In this 
research, adaptive and fast methods are investigated 
for improving the OTSU algorithm’s segmentation 
efficiency and optimizing the segmentation effect, as 
shown in Figure 3.

Pre-trained models in DL

A pre-trained model is a model created by someone else 
to solve a similar problem. Instead of building a model 
from scratch to solve a similar problem, you use the 
model trained on another problem as a starting point.

As the DL-based network evolves, its structure is 
deepening; while this helps the network to perform more 
complex feature pattern extraction, it may also introduce 
the problem of gradient disappearance or gradient 
explosion. “Gradient disappearance” and “gradient 
explosion” can lead to the following shortcomings: 
(1) Long training time but network convergence becomes 
very difficult or even non-convergent. (2) The network 
performance will gradually saturate and even begin to 
degrade, known as the degradation problem of deep 
networks. To solve such problems, He et al.[23] proposed 
the ResNet network, which makes it possible to obtain 
good performance and efficiency of the network even 
when the number of network layers is very deep (even 

Figure 1: A training dataset

Figure 2: Histogram equalization

Figure 3: OTSU algorithm’s segmentation
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over 1000 layers), as shown in Figure 4.

There is an identity mapping in the residual module 
of ResNet that causes the output of the network to 
change from F (x) to F (x) + x. The training error of a 
deep network is generally higher than that of a shallow 
network. However, adding multiple layers of constant 
mapping (y = x) to a shallow network turns it into a 
deep network, and such a deep network can get the 
same training error as a shallow network. This shows 
that the layers of constant mapping are better trained. 
For the residual network, when the residual is 0, the 
stacking layer only does constant mapping at this time, 
and according to the above conclusion, theoretically, the 
network performance will not degrade at least.

VGG16 is a 16-layer network used by the Visual 
Geometry Group at the University of Oxford to 
obtain state-of-the-art results in the ILSVRC-2014 
competition. The main feature of this architecture 

was the increased depth of the network. In VGG16, 
224 × 224 RGB images are passed through 5 blocks 
of convolutional layers where each block is composed 
of increasing numbers of 3 × 3 filters. The stride is 
fixed to 1 while the convolutional layer inputs are 
padded such that the spatial resolution is preserved 
after convolution (i.e., the padding is 1 pixel for 33 
filters). The blocks are separated by max-pooling 
layers. Max-pooling has performed over 22 windows 
with stride 2. The 5 blocks of convolutional layers 
are followed by three fully connected (FC) layers. 
The final layer is a soft-max layer that outputs class 
probabilities Figure 5.

The VGG-19 neural network consists of 19 layers of deep 
neural network and has more weight. The size of the 
“VGG-19” network in terms of FC nodes is 574 MB. As 
the number of layers increases, the accuracy of DNN is 
improved. The VGG-19 model is comprised of 19 deep 
trainable layers performing convolution, which is FC 
with max-pooling and dropout layers. In this paper, the 
convolutional layer is trained to perform a customized 
classification role that involved a densely connected 
classifier and to regularize a dropout layer was used.

VGG-19 is so beneficial, and it simply uses 3 × 3 
ConvNet arranged as above to extend the depth. To 
decrease the size, max-pooling layers are applied as a 
handler. Fully convolutional network layers are two in 
number and have 4096 neurons applied. VGG is trained 
based on individual lesions and for testing all types of 
lesions were considered to reduce the number of false 
positives. Convolution layers perform the convolution 
process over images at every pixel, allowing the outcome 
to pass through the subsequent layer Figure 5.

MobileNets is a model built primarily from depth-wise 
separable convolutions that were first announced in 
Sifre[24] and later utilized in Inception models[25] to 
reduce the volume of computation restrictions in the 
first few layers. Flattened networks[26] built a network 
comprised of fully factorized convolutions and showed 
the possibility of extremely factorized networks. In 
addition to using topological networks, Factorized 
Networks[27] uses a similar factorized convolution. The 
Xception network[28] was the first to show how to scale 
up depth-wise separable filters to outperform. Inception 
V3 networks. Squeeze net[29] is another small network 
that uses the bottleneck method to create a very small 
network. Arranged transform networks[30] and deep-fried 
ConvNets are two other reduced computation networks.

Figure 4: Pre-trained models

Figure 5: Accuracy and loss curves for the VGG-16 and VGG-19
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DL

DL is a variant of the traditional neural network that 
outperforms its predecessors significantly. Furthermore, 
DL uses both transformations and graph technology to 
construct multi-layer learning models. The latest DL 
algorithms have achieved excellent results in a range 
of applications, including audio and speech processing, 
image processing, visual data processing, and natural 
language processing (NLP), among others.[31]

Types of DL

Recursive neural networks (RVNN)

RvNN can predict outcomes in a hierarchical framework 
and classify them using compositional vectors.[32] RvNN 
development is primarily inspired by recursive auto-
associative memory. The RvNN architecture was created 
to handle objects with randomly formed structures, 
such as graphs and trees. From a variable-size recursive-
data structure, this method constructs a fixed-width 
distributed representation. A back-propagation through 
structure (BTS) learning mechanism is used to train 
the network.[33]

The BTS system uses the same general-back propagation 
method as the general-back propagation algorithm and 
can support a treelike structure. The network is trained 
to reproduce the input-layer pattern at the output layer 
through auto-association. In the domain of NLP, RvNN 
is extremely effective.[34]

Recurrent neural networks (RNNs)

RNNs are a well-known and widely used algorithm 
in the field of DL. RNN is mostly used in speech 
processing and natural language processing.[35] RNNs, 
unlike traditional networks, utilize sequential data in 
their networks. This property is essential to a variety of 
applications because the inherent structure in the data 
sequence provides valuable information. To discern the 
meaning of a given word in a sentence, for example, it is 
necessary to comprehend the context of the statement. 
As a result, the RNN can be thought of as a short-term 
memory unit, with x representing the input layer, y 
representing the output layer, and s representing the 
state (hidden) layer. Three different types of deep RNN 
techniques, namely, “Hidden-to-Hidden,” “Hidden-to-
Output,” and “Input-to-Hidden.”

CNNs

The CNN algorithm is the most well-known and widely 
used.[36] The fundamental advantage of CNN over 
its predecessors is that it automatically recognizes 
relevant elements without the need for human 
intervention.[37] Computer vision,[38] audio processing,[39] 
and face recognition[40] are just a few of the disciplines 
where CNNs have been used widely.

Like a traditional neural network, the structure of 
CNNs was inspired by neurons in human and animal 
brains. A  complicated sequence of cells creates the 
visual cortex in a cat’s brain, and this pattern is 
mimicked by CNN.[41] Three major advantages of CNN 
have been identified: equivalent representations, 
sparse interactions, and parameter sharing. Unlike 
traditional FC networks, CNN uses shared weights 
and local connections to fully exploit 2D input-data 
structures like image signals.

Each layer’s input x is structured in three dimensions 
in a CNN model: height, width, and depth, or m*m*r, 
where the height (m) equals the width. The channel 
number is another name for the depth. The depth (r) of 
an RGB image, for example, is three. Each convolutional 
layer has several kernels (filters) that are designated by 
k and have three dimensions (n*n*q), comparable to the 
input picture; however, n must be smaller than m, and 
q must be equal to or smaller than r. Furthermore, the 
kernels serve as the foundation for local connections, 
which use comparable parameters (bias [bk] and weight 
[wk]) to generate k feature maps.  (m-n-1) with the size 
hk. The dot product between the input and the weights 
is calculated by the convolution layer.

hk=f(Wk ∗ x + bk)� (1)

Next, each feature map in the sub-sampling layers is 
down-sampled. This results in a decrease in network 
parameters, which speeds up the training process and 
allows for the resolution of the overfitting problem. 
The pooling function adjacent area of size p*p, where 
p is the kernel size, for all feature maps. Finally, as in a 
conventional neural network, the FC layers receive the 
mid-and low-level features and generate the high-level 
abstraction, which represents the last-stage layers. The 
final layer is used to provide classification scores. Every 
score represents the probability of a specific class for 
a given case.
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CNN layers

Convolutional layer

It is made up of a set of convolutional filters (so-called 
kernels). The output feature map is generated by 
convolving the input image with these filters, which are 
expressed as N-dimensional metrics. Kernel definition: 
A  grid of discrete numbers or values describes the 
kernel, the CNN input format is presented first, followed 
by the convolutional operation. The vector format is the 
classic neural network’s input, while the CNN’s input is 
a multi-channeled picture. The gray-scale image format, 
for example, is single-channel, but the RGB image 
format is three-channeled. Consider a 4*4 gray-scale 
image with a 2*2 random weight-initialized kernel to 
better comprehend the convolutional operation.

Pooling layer

The pooling layer’s primary function is to subsample the 
feature maps. The convolutional operations are used to 
create these maps. In other words, this method reduces the 
size of huge feature maps to make smaller feature maps. At 
the same time, it keeps most of the dominating information 
(or characteristics) throughout the pooling stage. Before 
the pooling process, both the stride and the kernel are size 
assigned in the same way as the convolutional operation 
is. In different pooling layers, many types of pooling 
algorithms are accessible. Tree pooling, gated pooling, 
average pooling, min pooling, max pooling, global average 
pooling (GAP), and global max-pooling are some of these 
strategies. The most familiar and frequently utilized 
pooling methods are the max, min, and GAP pooling.

Activation function

It makes the decision as to whether or not to fire a neuron 
with reference to a particular input by creating the 
corresponding output. It must also be able to distinguish, 
which is a crucial characteristic because it allows the 
network to be trained using error back-propagation. In 
CNNs and other deep neural networks, the following 
types of activation functions are most typically utilized.

Sigmoid

This activation function takes real numbers as input and 
outputs only values between zero and one. The S-shaped 
sigmoid function curve can be quantitatively represented.

f(x) sigm =1/(1+e−x)

Tanh

It’s similar to the sigmoid function in that it takes real 
values as input, but the output can only be between 
−1 and 1.

f(x)tanh=(ex −e−x)/(ex+ e−x)

ReLU

The most commonly used function in the CNN context. 
It converts the whole values of the input to positive 
numbers. Lower computational load is the main benefit 
of ReLU over the others.

f(x)ReLU=max(0,x)

FC layer

This layer is at the bottom of any CNN architecture. 
The so-called FC technique connects each neuron in 
this layer to all neurons in the previous layer. As a CNN 
classifier, it is used. As a feed-forward ANN, it uses the 
same basic mechanism as a traditional multiple-layer 
perceptron neural network. The FC layer gets its input 
from the previous pooling or convolutional layer. This 
input takes the shape of a vector, which is formed by 
flattening the feature maps.

Loss functions

The projected error created across the training samples 
in the CNN model is calculated using loss functions in 
the output layer. The disparity between the actual and 
expected output is revealed by this inaccuracy. The CNN 
learning process will then be used to optimize it. The 
loss function, on the other hand, uses two parameters 
to determine the error. The first parameter is the CNN 
estimated output (also known as the prediction). The 
second parameter is the actual output (sometimes 
known as the label). Several types of loss functions are 
employed in various problem types.

Cross-entropy or SoftMax Loss function

This function is frequently used to evaluate the CNN 
model’s performance. The log loss function is another 
name for it. The likelihood is the output of the probability 
p∈ {0,1}. In addition, multi-class classification issues, 
it is commonly used to replace the square error loss 
function. It uses SoftMax activations in the output layer 
to generate the output within a probability distribution.
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pi=eak/∑NK=1 eak

Here, eai represents the non-normalized output from 
the preceding layer, while N represents the number of 
neurons in the output layer.

H(p,y)=−∑ yi log(pi)

Where i∈[1, N].

Euclidean loss function

This function is widely used in regression problems. 
In addition, it is also the so-called mean square error.

H(p,y) = 1/2N * ∑(pi−yi)2

Hinge loss function

This function is commonly employed in problems 
related to binary classification.

H (p, y) = ∑max(0,m−[2yi−1]pi)

The margin m is commonly set to 1. Moreover, the 
predicted output is denoted as pi, while the desired 
output is denoted as yi.

Results

In this study, four different pre-trained architectural 
models, namely, VGG-16, VGG-19, MobileNetV2, and 
ResNet50 are employed to identify the difficulty of 
removing a mandibular third molar. Four classes of 
difficulty are determined (easy, difficult, medium, 
and normal). This section shows and discusses the 
results obtained by each model using several metrics 
such as accuracy, precision, recall, sensitivity, and 
specificity. Accuracy could be defined as the number of 
correctly predicted data out of all the data as shown in 
Eq. (1). Precision defines the number of positive class 
predictions that belong to the positive class as shown 
in Eq. (2). Recall denotes the number of positive class 
predictions made out of all positive examples in the 
dataset as shown in Eq. (3). The sensitivity is the true 
positive rate that could be formulated as shown in 
Eq. (4). Moreover, specificity is the true negative rate 
and can be defined, as shown in Eq. (5).

Here, TP, TN, FP, and FN refer to the true positive, true 
negative, false positive, and false-negative cases.

+TP TN
Accurancy=

TP+TN+FP+FN
� (1)

TP
Precision=

TP+FP
� (2)

TP
Recall=

TP+FN
� (3)

TP
Sensitvity=

TP+FN
� (4)

TN
Specificity=

TN+FP
� (5)

Discussion

VGG-16 and VGG-19 results

Table  1 shows the results obtained from VGG-16 
and VGG-19 in terms of accuracy, precision, recall, 
sensitivity, and specificity measures. It is noticeable 
that VGG-16 can efficiently classify the cases of medium 
class. Moreover, the overall training accuracy is also 
better than VGG-19. On the other hand, the VGG-19 
produces good results in difficult, easy, and normal 
cases. Furthermore, VGG-19 gains a promising accuracy, 
especially the testing accuracy. Hence, we can say that 

Table 1: Accuracy, Precision, Recall, Sensitivity, Specificity 
results for VGG-16 and VGG-19.

VGG-16 VGG-19
Precision Recall Precision Recall

Difficult 0.17 0.11 0.26 0.26
Easy 0.13 0.13 0.32 0.37
Medium 0.26 0.37 0.19 0.20
Normal 0.2 0.17 0.21 0.17
Train accuracy 0.89 0.84
Test accuracy 0.81 0.82
Sensitivity 0.27 0.46
Specificity 0.33 0.57
Time 1h 17m 1h 39m

Table 2: Show the Accuracy, Precision, Recall, Sensitivity, 
Specificity results for ResNet50 and MobileNetV2

MobileNetV2 ResNet50
Precision Recall Precision Recall

Difficult 0.19 0.26 0.23 0.48
Easy 0.29 0.33 0 0
Medium 0.13 0.07 0 0
Normal 0.23 0.25 0.13 0.29
Train accuracy 0.85 0.40
Test accuracy 0.79 0.44
Sensitivity 0.5 0.92
Specificity 0.52 0
Time 14m 40m
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VGG-19 is better than VGG-16 in terms of precision, 
recall, accuracy, sensitivity, and specificity. Although, 
the VGG-19 takes a long run time than the VGG-16. 
Table 2 provide the accuracy and loss curves for each 
pre-trained model and we can notice that VGG-19 has 
a good/smooth accuracy and loss curves compared to 
the VGG-16 model.

MobileNetV2 and ResNet50 results

Table 2 shows the results obtained from MobileNetV2 and 
ResNet50 in terms of accuracy, precision, recall, sensitivity, 
and specificity measures. It is noticeable that MobileNetV2 
can efficiently classify the cases of easy, medium, and 
normal classes. Moreover, the overall training accuracy is 
also better than ResNet50. The time required to completely 
run MobileNetV2 is less than the ResNet50. Hence, we 
can say that MobileNetV2 produces good classification 
results compared to the ResNet50. Figure 6 shows the 
accuracy and loss curves for both MobileNetV2 and 
ResNet50 models. Moreover, MobileNetV2 the accuracy 
and loss curves in the case of using MobileNetV2 are good 
compared to the ResNet50 model.

Conclusions

This study presented and validated DL tools for fast, 
accurate, and consistent automated measurement of 
removing a mandibular third molar on dental panoramic 
radiographs. In this work, the VGG-19 and MobileNetV2 
produce promising results. Moreover, the MobileNetV2 
model is a very fast-running model compared to other 
models. Hence, VGG-19 and MobileNetV2 models 
can effectively predict the difficulty of extracting the 
mandibular third molar.
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